When a measure becomes a target, it ceases to be a good measure”.
Goodharts lov, tilskrevet Charles Goodhart

Det er vanskelig å formulere en god strategi, i den grad at de fleste bedriftsstrategier ikke egentlig er strategier, men elegant formulert og nokså vag ønsketenkning.

Greit nok.

Men enda vanskeligere er det å implementere strategi – å gå fra overordnede mål til å spesifisere hva folk skal gjøre i hverdagen. Mange organisasjoner gjør dette ved å formulere konkrete målsettinger. Dette gjøres fordi generelle strategier gir liten konkret styringsinformasjon: Hvis du jobber på regnskapskontoret, er det ikke alltid så lett å forstå hva en strategi om at bedriften skal være “global, digital og bærekraftig” – for å sitere en bedrift jeg vet om – betyr når du er ferdig med morgenkaffen.

Bedrifter har gjerne en masse ulike kontrollsystemer, og strategisk endring gjennomføres ved at ledere implementerer strategi ved å velge et kontrollsystem og gjøre det aktivt:

In situations of strategic change, control systems are used by top managers to formalize beliefs, set boundaries on acceptable strategic behavior, define and measure critical performance variables, and motivate debate and discussion about strategic uncertainties. In addition to traditional measuring and monitoring functions, control systems are used by top managers to overcome organizational inertia; communicate new strategic agendas; establish implementation timetables and targets; and ensure continuing attention to new strategic initiatives. (Simons, 1994)

Kontrollsystemer gjør det strategiske konkret, og bedrifter med klare strategier har gjerne klare målesystemer: Microsoft, for eksempel, har en strategi om å ta i bruk de AI-basert systemene de selger, og måler (og belønner) i disse dager sine mellomledere på i hvor stor grad de klarer å flytte systemutviklingsarbeidet – og annet arbeid – fra håndkoding til automasjon.

Fra overordnet til konkret

Men hva er et godt mål, og hvordan kommer man frem til det? I utgangspunktet burde en klar og god strategi være selvforklarende, men slik er det ganske enkelt ikke. Ting må gjøres konkret, og resultatet av den prosessen har mange navn: KPI, OKR, MBO, BSC og andre TBF‘er. I Norge akkurat nå er OKR (Objektives and key results, popularisert av Andy Grove i Intel engang på 80-tallet) mest populært. Felles for alt dette er at man setter mål som er smarte, hvilket (på norsk) vil si at de er

Dette er temmelig tøffe kriterier, og de fleste ledere og mellomledere sliter med å formulere målsettinger som tilfredstiller alle disse kriteriene.

Man får det man måler, og bare det

Det er besnærende å tenke at bare man løser definisjonsproblemet, har man løst implementeringsutfordringen. Men vi mennesker er ikke maskiner: Får vi mange mål å forholde oss til, tenderer vi til å prioritere mellom. Og får vi svært konkrete mål, vel, så produserer vi det som konkret måles, ikke det underliggende fenomenet som er ment å måles.

BSC – balanced score card – ble skapt av Robert Kaplan og David Norton på tidlig 90-tall som en reaksjon på den utstrakte bruken av rene finansielle mål. Mye av kom i forlengelsen av Johnson & Kaplans svært inflytelsesrike Relevance Lost. Den boken viste at etterhvert som mer og mer av industriell produksjon ble automatisert, ble lønnsomhetsberegninger mer og mer et spørsmål om hvor mye av salgs- og administrasjonskostnader (GS&A) som ble tillagt enhetskostnaden. Resultatet var at man masseproduserte for mye, overoptimaliserte produksjon, og at måleinstrumentene ikke lenger ga styringsinformasjon for store deler av organisasjonen.

BSC innførte ikke-finansielle mål, relatert til kundetilfredshet, læring og interne prosesser, og ble tatt i bruk av mange organisasjoner. Dette skjedde ikke uten utfordringer – finansielle mål hadde en tendens til å trumfe alt annet i nedgangstider, for eksempel. I tillegg produserte systemet mange mål, og det viste seg at vi mennesker har problemer med å forholde oss til flere ytelsesdimensjoner samtidig. Da velger vi gjerne et av målene og overfokuserer på det: Selgere som blir belønnet for å øke salget, for eksempel, selger som bare det uten å undersøke om kjøperne trenger produktet eller er i stand til å betale for det.

Jeg er blitt fortalt at i Sovjetunionen, der finansielle mål ble undertrykket, ble møbelprodusenter målt på antall tonn møbler de produserte i året. Resultatet ble svært tunge møbler.

Den industrialiserte kunnskapsarbeideren

Detaljerte målekriterier brutt ned på grupper og kanskje til og med individer kommer fra en top-down tankegang om hva strategi er: Ledelsen ser på organisasjonen som et verktøy, og forteller organisasjonen hva den vil ha, ofte ved at ledelsens egne mål er satt av et styre som har godkjent en overordnet strategi. En slik tankegang er industriell, og egner seg best i situasjoner der målekriteriene er lett observerbare og kvantifiserbare, og der fremgangsmåten for å oppnå dem er relativt kjent.

Med andre ord: Man ber organisasjonen om å gjøre noe ved å sette kriterier for hva som er bra og hva som ikke er det.

Men hva med kunnskapsarbeid? Hittil har ikke kunnskapsarbeid blitt industrialisert i særlig grad – primært fordi systemene som skal gjøre det ikke har funnets. Riktignok har endringer i mål gjort at mange organisasjoner har fått et endret arbeidsmiljø – journalister har gått fra å få artikler antatt til å publisere ting optimalisert for klikking, for eksempel – men automatisering av reellt kunnskapsarbeid har latt vente på seg.

Fremtidens kunnskapsorganisasjoner vil ha digitale medarbeidere på lik linje med mennesker (Ide og Talamàs, 2025). Interaksjon med en digital medarbeider – la oss kalle det en språkrobot (Arnulf, 2025) – skjer ved prompting: Man spesifiserer hva man vil ha ved å spørre, og fortsetter å spørre til man er fornøyd med svaret.

Hva om vi snur litt på flisa – kan vi lære å sette gode mål for menneskelige medarbeidere ved å finne hva som er gode mål for de digitale aktørene?

Hva med å behandle menneskelige medarbeidere som digitale?

Det finnes mange utsagn om hva som er god prompting, men felles for dem er en oppbygging som sier noe om

For eksempel kan en leder med ansvar for digitalt grensesnitt i en bank tenkes å gi følgende prompt til en språkrobot:

Du er en UX-utvikler i et finansselskap. Basert på den koden som allerede er skrevet og annen kode fra andre systemer, skriv et program som tillater besteforeldre å kjøpe aksjefond til barnebarna sine som jule- eller bursdaggave. Koble dette systemet mot CRM-systemet slik at besteforeldrene blir varslet før jul og bursdager, men hold alt innenfor GDPR-regelverket.

Dette utsagnet sier noe om hvem man forventes å være, hvilke ressurser man har, hva som skal gjøres, og hva som er kriteriet for god måloppnåelse.

Eller, med andre ord, en målsetting og et resultat – men skrevet som en tekst i stedet for et numerisk målekriterium.

Dette er ikke så eksotisk som det høres ut: Amazon er kjent for at man i ledergruppen der ikke produserer Powerpoints, men i stedet skriver et sekssiders memo som leses i fellesskap (så alle må lese grundig) og som danner grunnlag for diskusjoner og beslutninger.

Men metoden er interessant fordi man kan lære noe om hvordan man skal formulere mål (og strategi) ved å måtte formulere det for en språkrobot, før man formulerer det for et menneske.

Og det kan kanskje være språkrobotens bidrag til å heve kvaliteten i det som gjøres i en organisasjon, ikke bare kvantiteten.

Litteraturhenvisninger:

Arnulf, J. K. (2025). Kunstig intelligent psykologi. Fagbokforlaget.

Ide, E., & Talamàs, E. (2025, March 3). Artificial Intelligence in the Knowledge Economy. Stanford Digital Economy Lab. https://arxiv.org/pdf/2312.05481

Johnson, H. T., & Kaplan, R. S. (1987). Relevance Lost: The Rise and Fall of Management Accounting. Harvard Business School Press.

Kaplan, R. S., & Norton, D. P. (1996). The Balanced Scorecard: Translating Strategy into Action. Harvard Business Review Press.

Simons, R. (1994). How new top managers use control systems as levers of strategic renewal. Strategic Management Journal, 15(3), 169–189. https://doi.org/10.1002/smj.4250150301

Prompts:

De tre tegningene er generert av ChatGPT 5.1, med følgende prompts:

Espen Avatar

Posted by

Leave a comment